Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.

نویسندگان

  • C C Bell
  • A Caputi
  • K Grant
  • J Serrier
چکیده

Synaptic plasticity occurs in several regions of the vertebrate brain and is believed to mediate the storage of behaviorally significant information during learning. Synaptic plasticity is well demonstrated in most cases, but the behavioral meaning of the relevant neural signals and the behavioral role of the plasticity are uncertain. In this paper we describe a case of synaptic plasticity which involves identifiable sensory and motor signals and which appears to mediate the storage of an image of past sensory input. Corollary discharge signals associated with the motor command that drives the electric organ are prominent in the electrosensory lobe of mormyrid electric fish. Some of these corollary discharge signals elicit a negative image or representation of the electrosensory input pattern that has followed recent motor commands. When the temporal and spatial pattern of sensory input changes, the corollary discharge effect also changes in a corresponding manner. The cellular mechanisms by which the corollary discharge-evoked representation is stored were investigated by intracellular recording from cells of the electrosensory lobe and pairing intracellular current pulses with the corollary discharge signal. The results indicate that the representation of recent sensory input is stored by means of anti-Hebbian plasticity at the synapses between corollary discharge-conveying fibers and cells of the electrosensory lobe. The results also suggest that dendritic spikes and plasticity at inhibitory synapses are involved in the phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-Hebbian Spike-Timing-Dependent Plasticity and Adaptive Sensory Processing

Adaptive sensory processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptive sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important novel information needed to improve performance of specific tasks. The mechanism of spike-timing-dependent plasticity...

متن کامل

Neural mechanisms for filtering self-generated sensory signals in cerebellum-like circuits.

This review focuses on recent progress in understanding mechanisms for filtering self-generated sensory signals in cerebellum-like circuits in fish and mammals. Recent in vitro studies in weakly electric gymnotid fish have explored the interplay among anti-Hebbian plasticity, synaptic dynamics, and feedforward inhibition in canceling self-generated electrosensory inputs. Studies of the mammalia...

متن کامل

Control of neuronal firing by dynamic parallel fiber feedback: implications for electrosensory reafference suppression.

The cancellation of self-generated components of sensory inputs is a key function of sensory feedback pathways. In many systems, cerebellar parallel fiber feedback mediates this cancellation through anti-Hebbian plasticity, resulting in the generation of a negative image of the reafferent inputs. Parallel fiber feedback involves direct excitation and disynaptic inhibition as well as synaptic pl...

متن کامل

Effects of visual deprivation on synaptic plasticity of visual cortex

  TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...

متن کامل

Modulation of calcium-dependent postsynaptic depression contributes to an adaptive sensory filter.

Modulation of calcium-dependent postsynaptic depression contributes to an adaptive sensory filter. J. Neurophysiol. 80: 3352-3355, 1998. The ability of organisms to ignore unimportant patterns of sensory input may be as critical as the ability to attend to those that are behaviorally relevant. Mechanisms used to reject irrelevant inputs range from peripheral filters, which allow only restricted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 10  شماره 

صفحات  -

تاریخ انتشار 1993